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Algebraix Technology Core Library

algebraixlib is a library that provides constructs and facilities to harness the fundamentals
of data algebra. You find us:


	On PyPI [http://pypi.python.org/pypi/algebraixlib]. Here you find the pip installer. Install as pip install algebraixlib
(system-wide) or pip install algebraixlib --user <username> (for a single user) or download
the package.

	On GitHub [http://github.com/AlgebraixData/algebraixlib]. Here you find “Getting Started” quick-start instructions, the full sources and
can use the bug tracker.

	On Algebraix Data’s GitHub project page [http://algebraixdata.github.io/algebraixlib/]. Here you find support information.



Also check out our tutorials and example code in the examples [https://github.com/AlgebraixData/algebraixlib/tree/master/examples] directory on GitHub.
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A Beginner’s Introduction to Data Algebra

The purpose of this section is to provide a brief introduction to data algebra.  In particular,
we would like to motivate the various definitions and terms in a way that is not daunting to
beginners, and shows the usefulness of the data algebra framework.  Note that this introduction
will make use of set notation, of which there is a short primer at Set Notation if needed.

We will do this by taking a dataset and analyze it using data algebra.  Consider the following
table of information:


Sightings











	year
	providedScientificName
	ITISscientificName
	ITIScommonName
	ITIStsn
	validAcceptedITIStsn
	decimalLatitude
	decimalLongitude




	1970
	Micrurus tener Baird & Girard, 1853
	Micrurus tener
	Texas Coralsnake
	683040
	683040
	30.43099976
	-98.05999756


	2008
	Masticophis taeniatus Hallowell, 1852
	Masticophis taeniatus
	Culebra-chirriadora adornada;Striped Whipsnake
	174240
	174240
	30.43399048
	-97.96090698


	1951
	Kinosternon flavescens Agassiz, 1857
	Kinosternon flavescens
	Tortuga-pecho quebrado amarilla;Yellow Mud Turtle
	173766
	173766
	30.43678093
	-97.66889191


	1951
	Acris crepitans Baird, 1854
	Acris crepitans
	Northern Cricket Frog;Rana-grillo norte
	173520
	173520
	30.43678093
	-97.66889191


	2011
	Parus bicolor Linnaeus, 1766
	Baeolophus bicolor
	Carbonero cresta negra;Tufted Titmouse
	178738
	554138
	30.4736805
	-97.96916962





Table Sightings is taken from BISON (Biodiversity Information Serving Our Nation) [1], a
publicly available dataset from the US Geological Survey, and consists of animal sightings in
Travis County, TX.


Couplets: The Basic Pieces of Data

Every data entry, or datum, is represented in data algebra using couplets.  The idea being
any piece of data consists of two pieces of information.  For example in table Sightings 2011 refers
to a year, and 30.7436805 is a decimalLatitude.  In data algebra notation we write these as


\[year{\mapsto}2011\]

and


\[decimalLatitude{\mapsto}30.7436805\]

The object before the arrow is called the left component, and the object after the arrow is
called the right component.  For example the couplet \(year{\mapsto}2011\) has left
component \(year\) and right right component \(2011\).




Relations: Sets of Couplets

Each row of Sightings is a set of couplets, which we call a relation.  For example,
the first row of Sightings, let us denote it by \(R_1\), is the relation


\[\begin{split}\begin{align*}
R_1 =\ & \{ \\
    & year{\mapsto}1970,  \\
    & providedScientificName{\mapsto}Micrurus\ tener\ Baird\ \&\ Girard,\ 1853, \\
    & ITISscientificName{\mapsto}Micrurus\ tener, \\
    & ITIScommonName{\mapsto}Texas\ Coralsnake, \\
    & ITIStsn{\mapsto}683040,                 \\
    & validAcceptedITIStsn{\mapsto}683040,    \\
    & decimalLatitude{\mapsto}30.43099976,    \\
    & decimalLongitude{\mapsto}-98.05999756 \\
& \}
\end{align*}\end{split}\]

While there are other ways of forming relations from the table, for our purposes we will use rows
to form relations.  One reason we will do this is that each row relation is in fact a
function in this case.  It is often the case that row relations are functional.


Getting Data from a Relation

One of our primary methods of extracting information from a dataset is composition.  Let
us say we want to know the \(ITIScommonName\) of the first row of Sightings.  What we can do
is compose \(R_1\) with the relation


\[\{ ITIScommonName{\mapsto}ITIScommonName \}\]

Just like function composition, the output of the first relation becomes the input for the next
relation.  In this case, our first relation has only one output, or right component, which
corresponds to only one input, or left component, in \(R_1\), hence


\[R_1 \circ \{ ITIScommonName{\mapsto}ITIScommonName \} =
\{ITIScommonName{\mapsto}Texas\ Coralsnake\}\]

which tells us that \(ITIScommonName\) for the first row is \(Texas\ Coralsnake\).  (Note
that, just like with functions, compositions are evaluated from right to left.  In particular,
given relation composition \(r_2 \circ r_1\) we would apply \(r_1\) first, and then
\(r_2\).)






Clans: Sets of Relations

A set of relations is called a clan.  In particular, any table can be divided up into a
set of row relations, which means any table can be represented by a clan.  We will refer to the
table Sightings as a clan whose relations are the row relations.  Once again, we can use
composition to extract data out of our clan.


Getting Data from a Clan

For example, if we want the projection (in terms of relational algebra) of Sightings over
\(ITISscientificName\) and \(ITIScommonName\), we can form the relation


\[D =   \{  ITISscientificName{\mapsto}ITISscientificName,
    ITIScommonName{\mapsto}ITIScommonName
\}\]

Let us use \(\mathbb{S}\) to denote the Sightings clan.  If we use \(R_k\) to denote the
\(k\)th row of Sightings, then


\[\mathbb{S} = \{ R_1, R_2, R_3, R_4, R_5 \}\]

Note that


\[\mathbb{S} \circ D = \{ R_1 \circ D, R_2 \circ D, R_3 \circ D, R_4 \circ D,
R_5 \circ D \}\]

and \(R_k \circ D\) will give you the \(ITISscientificName\) and \(ITIScommonName\)
in the \(k\)th row of Sightings.  In particular we have


\[\begin{split}\mathbb{S} \circ D =\
    & \{ \\
        & \{ ITISscientificName{\mapsto}Micrurus\ tener,
            ITIScommonName{\mapsto}Texas\ Coralsnake \} \\
        & \{ ITISscientificName{\mapsto}Masticophis\ taeniatus,
            ITIScommonName{\mapsto}Culebra-chirriadora\ adornada;Striped\ Whipsnake \} \\
        & \{ ITISscientificName{\mapsto}Kinosternon\ flavescens,
            ITIScommonName{\mapsto}Tortuga-pecho\ quebrado\ amarilla;Yellow\ Mud\ Turtle \} \\
        & \{ ITISscientificName{\mapsto}Acris\ crepitans,
            ITIScommonName{\mapsto}Northern\ Cricket\ Frog;Rana-grillo\ norte \} \\
        & \{ ITISscientificName{\mapsto}Baeolophus\ bicolor,
            ITIScommonName{\mapsto}Carbonero\ cresta\ negra;Tufted\ Titmouse \} \\
    & \}\end{split}\]

which is the projection of Sightings onto \(ITISscientificName\) and \(ITIScommonName\) as
we wanted.




	[1]	BISON can be accessed at http://bison.usgs.ornl.gov  To obtain the data in the table,
on the map click on Texas, then on Travis county, and one can then download all of the
wildlife sightings recorded for Travis county.  The above table is only a small subset of
the many sightings in Travis county.












          

      

      

    

  

    
      
          
            
  
Algebra Reference


	absolute

	Applied to couplets, sets, constructs derived from them (like
relations) and algebras. Such a construct is called absolute if its
ground set is based on set A (\(A\)).

See for example absolute set.


	A relation that has only members that are elements of the Cartesian product
\(A \times A\) is an ‘absolute relation’. Example: \(\{a{\mapsto}1, b{\mapsto}2\}\).
(However, an absolute relation is not an absolute set; the members of the
relation are couplets, not atoms.)

	The relation \(\{a{\mapsto}1, b{\mapsto}\{2\}\}\) is not an absolute relation, as one
of the right elements of the member couplets is not an atom (it is a
set \(\{2\}\)).





	absolute clan

	An absolute clan is a clan that is an element of the second power
set of the Cartesian product of set A (\(A\)) (\(P^2(A \times A)\)). Such a clan has
only atoms as members of the couplets in the relations. Example:
\(\{ \{2{\mapsto}1, 3{\mapsto}2\}, \{5{\mapsto}4, 9{\mapsto}7\} \}\).

	absolute couplet

	An absolute couplet is a couplet that is an element of the Cartesian
product of set A (\(A\)) (\(A \times A\)). Such a couplet has only atoms as members.
Example: \(2{\mapsto}1\).

	absolute ground set

	Our algebras normally have a ground set and an absolute ground set. The
absolute ground set is the ground set with the elements of the algebra being expressed in
terms of set A (\(A\)).

For example, the ground set of the algebra of relations is
\(P(M \times M)\); this allows sets and couplets as elements of the
couplets that form the relations. The absolute ground set of the algebra of relations is
\(P(A \times A)\); this requires atoms to form the couplets that form the
relations.



	absolute multiclan

	An absolute multiclan is a multiclan that has only atoms as
members of the couplets in the relations. See also absolute clan.

	absolute multiset

	An absolute multiset is a multiset that is an element of the power
set of the Cartesian product of set A (\(A\)) with set N (\(N\)) (\(P(A \times N)\).
Such a multiset has only atoms as elements. Example: \(\{1{:}3, 'a'{:}5\}\).

	absolute relation

	An absolute relation is a set that is an element of the power set
of the Cartesian product of set A (\(A\)) (\(P(A \times A)\). Such a set has only
couplets as elements that consist only of atoms. Example:
\(\{2{\mapsto}1, 5{\mapsto}2\}\).

	absolute set

	An absolute set is a set that is an element of the power set of
set A (\(A\)) (\(P(A)\). Such a set has only atoms as elements. Example:
\(\{1, 2\}\).

	algebra

	An algebra is a set together with one or more operations defined on it. For a more
detailed definition see Algebras.

	algebra of clans

	The algebra of clans is the algebra on sets of relations.  As a
result its ground set is the second power set of couplets, which allows us to
use more operations in addition to those on an algebra of sets.  See
Algebra of Clans for a more detailed explanation.

	algebra of couplets

	Given a collection of couplets we define an algebra on it by including the operations of
composition and transposition.  See Algebra of Couplets for a more
detailed definition.

	algebra of multiclans

	An algebra defined on multisets of relations.  This algebra is
similar to the algebra of clans, but takes into account multiplicities of
relations.  See Algebra of Multiclans for more information.

	algebra of multisets

	An algebra on the set of all multisets of set M (\(M\)) with the operations of
multiset union, multiset intersection, multiset addition,
multiset difference, and submultiset.  See
Multiset Algebra for more detailed information.

	algebra of relations

	The algebra of relations is an algebra on a set of couplets under the operations of
composition and transposition.  See Algebra of Relations for a more
detailed definition.

	algebra of sets

	Also called set algebra, is the algebra formed by taking the power set of
a set and applying the operations of union and intersection.
See Algebra of Sets for a more detailed definition.

	atom

	An atom is a datum that is not a set or a couplet. The set of all atoms is
set A (\(A\)).

	bijective

	A relation is bijective if it is both left-functional and
right-functional.

	binary extension

	A binary extension is an extension of a binary operation from a given
algebra to an extension of the algebra that consists of sets of
the elements of the original algebra:


\[binaryExtn(op, S1, S2) := \{op(s1, s2)\ :\ s1 \in S1 \text{ and } s2 \in S2
\text{ where } op(s1, s2) \text{ is defined}\}\]



	binary intersection

	A binary intersection is an intersection of two sets. See
intersection for a complete definition.

	binary multi-extension

	A binary multi-extension is an extension of a binary operation from a
given algebra to an extension of the algebra that consists of multisets of
the elements of the original algebra:


\[binMultiExtn(op, S1, S2) :=
\{op(s1, s2){:}(\dot{S1}(s1) \cdot \dot{S2}(s2))\
:\ s1 \in S1 \text{ and } s2 \in S2
\text{ where } op(s1, s2) \text{ is defined}\}\]



	binary operation

	A binary operation is an operation with two arguments, typically with a result that
belongs to the same ground set as the arguments (when the operation is a member of
an algebra).

	binary relation

	We represent a binary relation [http://en.wikipedia.org/wiki/Binary_relation] as a set where every member is a couplet.
We also call this simply a relation.

	binary union

	A binary union is a union of two sets.  See union for more information.

	Cartesian product

	The Cartesian product of two sets \(X \times Y\) is the set of all
couplets where the first member of the couplet is a member of \(X\) and the
second member of the couplet is a member of \(Y\).

	clan

	A clan is a set of relations.

	clan diagonal

	A clan diagonal is a clan with a single relation that is a
diagonal.

	complement

	The complement of a given set is the collection of elements not in the given set.  This
definition depends on a choice of a larger set in which context every other set is a subset
of.  In particular, given an algebra of sets whose ground set is the
power set \(P(U)\) and \(X\in P(U)\), then the complement of \(X\) is:


\[X' := \{x \in U: x \not\in X\} = U - X\]



	composition

	The composition of the couplets \(a{\mapsto}b\) and \(c{\mapsto}d\) is
defined as:


\[\begin{split}c{\mapsto}d \circ a{\mapsto}b :=
\begin{cases}
    a{\mapsto}d & \text{if } b = c \\
    \text{undefined} & \text{if } b \ne c
\end{cases}\end{split}\]

The operation may be extended to extended algebras using the
binary extension and – if there is no danger of ambiguities – is then also called
simply ‘composition’.

Specific extensions:


	Algebra of relations:
\(R_2 \circ R_1 := \{c_2 \circ c_1\ :\ c_1 \in R_1,\ c_2 \in R_2\}\)

(\(R_1\) and \(R_2\) are relations; \(c_1\) and \(c_2\) are
couplets.)



	Algebra of clans:
\(C_2 \circ C_1 := \{R_2 \circ R_1\ :\ R_1 \in C_1,\ R_2 \in C_2\}\)

(\(C_1\) and \(C_2\) are clans; \(R_1\) and \(R_2\) are
relations.)



	Algebra of multiclans:
\(\dot{C}_2 \circ \dot{C}_1 := \{(R_2 \circ R_1){:}(\dot{C}_2(R_2) \cdot \dot{C}_1(R_1))\ :\ R_1 \in \dot{C}_1,\ R_2 \in \dot{C}_2\}\)

(\(\dot{C}_1\) and \(\dot{C}_2\) are multiclans; \(R_1\) and
\(R_2\) are relations.)







	couplet

	A couplet is an ordered pair, following the Kuratowski definition of an ordered pair [http://en.wikipedia.org/wiki/Ordered_pair#Kuratowski_definition]
defined as \(\{\{l\}, \{l, r\}\}\). It is the mathematical object used to represent
a datum or data point.  We denote it by \(l{\mapsto}r\), with \(l\) called the
left component, and \(r\) the right component.

	cross-functional union

	A short name for cross-left-functional union in cases where no ambiguities are
expected.

	cross-intersection

	The cross-intersection is an extension of intersection (or
multiset intersection). Depending on the specific form of extension, it may be a
binary extension (when extending to an algebra of sets) or a
binary multi-extension (when extending to an algebra of multisets).

In the specific context, cross-intersection is the binary extension of
intersection from an algebra of sets to an algebra of sets of sets (for
example, from the algebra of relations to the algebra of clans). The
cross-intersection of the sets (of sets) \(\mathbb{S}\) and \(\mathbb{T}\) is
defined as:


\[\mathbb{S} \blacktriangle \mathbb{T}
= \{X \cap Y\ : X \in \mathbb{S} \text{ and } Y \in \mathbb{T}\}\]

For the version of cross-intersection on the algebra of multiclans and on an
algebra of multisets in general see multi-cross-intersection.



	cross-left-functional union

	The cross-left-functional union, (or cross-functional union), of two
clans \(\mathbb{C}\) and \(\mathbb{D}\) is a
binary extension of the left-functional union from the
algebra of relations to the algebra of clans:


\[\mathbb{C} \underset{f}{\blacktriangledown} \mathbb{D}
= \{R \underset{f}{\cup} Q\ : R \in \mathbb{C} \text{ and } Q \in \mathbb{D}\}\]



	cross-right-functional union

	The cross-right-functional union of two clans \(\mathbb{C}\) and
\(\mathbb{D}\) is a binary extension of the right-functional
union from the algebra of relations to the algebra of clans:


\[\mathbb{C} \underset{rf}{\blacktriangledown} \mathbb{D}
= \{R \underset{rf}{\cup} Q\ : R \in \mathbb{C} \text{ and } Q \in \mathbb{D}\}\]



	cross-substriction

	The cross-substriction is a binary extension of substriction from an
algebra of sets to an algebra of sets of sets (for example, from the
algebra of relations to the algebra of clans). The cross-substriction of
the sets (of sets) \(\mathbb{S}\) and \(\mathbb{T}\) is defined as:


\[\mathbb{S} \blacktriangleleft \mathbb{T}
= \{X \vartriangleleft Y\ : X \in \mathbb{S} \text{ and } Y \in \mathbb{T}\}
= \{X : X \in \mathbb{S} \text{ and } X \subset Y \text{ for some } Y \in \mathbb{T} \}\]

We also have a binary multi-extension of cross-substriction called the
multi-cross-substriction.



	cross-superstriction

	The cross-superstriction is a binary extension of superstriction from an
algebra of sets to an algebra of sets of sets (for example, from the
algebra of relations to the algebra of clans). The cross-superstriction of
the sets (of sets) \(\mathbb{S}\) and \(\mathbb{T}\) is defined as:


\[\mathbb{S} \blacktriangleright \mathbb{T}
= \{X \vartriangleright Y\ : X \in \mathbb{S} \text{ and } Y \in \mathbb{T}\}
= \{X : X \in \mathbb{S} \text{ and } X \supset Y \text{ for some } Y \in \mathbb{T} \}\]

We also have a binary multi-extension of cross-superstriction called the
multi-cross-superstriction.



	cross-union

	The cross-union is a binary extension of union from an algebra of
sets to an algebra of sets of sets (for example, from the algebra of relations to
the algebra of clans). The cross-union of the sets (of sets) \(\mathbb{S}\) and
\(\mathbb{T}\) is defined as:


\[\mathbb{S} \blacktriangledown \mathbb{T}
= \{X \cup Y\ : X \in \mathbb{S} \text{ and } Y \in \mathbb{T}\}\]

We also have a binary multi-extension of cross-union called the
multi-cross-union.



	diagonal

	The diagonal is an equivalence relation. The diagonal of a set \(S\)
is defined as:


\[D_S = \{x{\mapsto}x \in S \times S\ : x \in S\}\]



	difference

	The difference of two sets \(S\) and \(T\) is the set of elements in
\(S\) but not in \(T\) (see also Wikipedia: Relative complement [http://en.wikipedia.org/wiki/Complement_%28set_theory%29#Relative_complement]). The definition
is:


\[S \setminus T = \{x: x \in S\ \&\ x \notin T\}\]



	equivalence relation

	A relation is said to be an equivalence relation if it is
reflexive, symmetric and transitive.

	extension

	An extension of a given set or algebra, is an extension of the set or algebra either by
expanding the ground set, the set of operations on the set or both.  For a more detailed
definition, see Extension.

	finite intersection

	A finite intersection is the intersection of a finite collection of sets. See
intersection for a complete definition.

	finite union

	A finite union is the union of a finite collection of sets.  See
union for a more detailed explanation.

	function

	A function is a left-functional relation.

	functional

	A short name for left-functional in cases where no ambiguities are expected.

	functional union

	A short name for left-functional union in cases where no ambiguities are
expected.

	ground set

	The set that contains all the elements of an algebra.

	identity element

	The element of the ground set of an algebra that, when used as one of the
arguments of a binary operation produces the other argument of the operation as
result of the operation.

	intersection

	An operation on sets that creates a set by collecting the elements in common to
two or more individual sets into a new set.  In mathematical terms, if
\(\mathbb{S}\) is a collection of sets, then the intersection of all of the sets
in \(\mathbb{S}\) is denoted:


\[\bigcap \mathbb{S} = \bigcap_{T\in\mathbb{S}}T,\]

and is the set \(\{x\ : \forall T \in \mathbb{S},\ x \in T\}\).  If
\(\mathbb{S}\) consists of only two sets, the intersection is called a binary
intersection.  If \(\mathbb{S}\) consists of a finite collection of sets, the
intersection is called a finite intersection.  See also Wikipedia: Intersection [http://en.wikipedia.org/wiki/Intersection_%28set_theory%29].



	left

	A short name for left component where no ambiguity is expected.

	left component

	Given a couplet represented by \(l{\mapsto}r\), the component \(l\) is
called the left component.

	left set

	The left set of a relation \(R\) is the set of all
left components of its members:


\[left(R) = \{ l\ : l{\mapsto}r \in R \}\]

The left set of a clan \(\mathbb{C}\) is the union of all
left sets of its member relations:


\[left(\mathbb{C}) = \underset{R\ \in\ \mathbb{C}}{\bigcup} left(R)\]



	left-functional

	A relation \(R\) is said to be left-functional, or simply
functional, if:


\[x{\mapsto}y \in R\ \& \ x{\mapsto}z \in R \implies y = z\]

A clan \(\mathbb{C}\) is said to be (left-)functional if all its relations are
functional:


\[\forall R \in \mathbb{C}: R \text{ is left-functional}\]



	left-functional union

	The left-functional union (or functional union) of two functions
\(R\) and \(Q\) is the union of the two relations if the result is
left-functional, otherwise the result is not defined:


\[\begin{split}R \underset{f}{\cup} Q =
\begin{cases}
    R \cup Q & \text{if }R \cup Q \text{ is left-functional} \\
    \text{undefined} & \text{if it is not left-functional}
\end{cases}\end{split}\]



	left-regular

	A clan \(\mathbb{C}\) is said to be left-regular (or short regular)
if it is left-functional and the left sets of all its relations
are the same:


\[\begin{split}\begin{align*}
    \forall R \in \mathbb{C}&: R \text{ is left-functional} \text{ and } \\
    \forall R, Q \in \mathbb{C}&: left(R) = left(Q)
\end{align*}\end{split}\]



	lhs-cross-functional union

	A short name for lhs-cross-left-functional union in cases where no ambiguities
are expected.

	lhs-cross-left-functional union

	Given two clans the lhs-cross-left-functional union (or
lhs-cross-functional union) takes the cross-left-functional union, then
any relations in the clan on the left side of the operation that resulted in the empty set
are collected by taking their union and combined with the result of the
cross-left-functional union.   Mathematically, if \(\mathbb{C}\) and \(\mathbb{D}\)
are the two clans in question, then their lhs-cross-left-functional union is:


\[\mathbb{C} \overrightarrow{\underset{f}\blacktriangledown} \mathbb{D} =
\mathbb{C} \underset{f}{\blacktriangledown} \mathbb{D}
\bigcup\{T : T\in\mathbb{C}\ \& \
    T \underset{f}{\blacktriangledown} \mathbb{D} = \varnothing \}\]



	multi-cross-intersection

	Let \(\dot{\mathbb{S}}\) and \(\dot{\mathbb{T}}\) be multisets of
sets with \(X \in \dot{\mathbb{S}}\) and \(Y \in \dot{\mathbb{T}}\), then
their multi-cross-intersection is defined in the same way as the
cross-intersection with the multiplicities satisfying:


\[\dot{\mathbb{S}} \blacktriangle \dot{\mathbb{T}}(X \cap Y) =
\dot{\mathbb{S}}(X) \cdot \dot{\mathbb{T}}(Y)\]

Where there is no ambiguity we will refer to the multi-cross-intersection simply as the
cross-intersection.



	multi-cross-substriction

	Let \(\dot{\mathbb{S}}\) and \(\dot{\mathbb{T}}\) be multisets of
sets with \(X \in \dot{\mathbb{S}}\) and \(Y \in \dot{\mathbb{T}}\), then
their multi-cross-substriction is defined in the same way as the
cross-substriction with the multiplicities satisfying:


\[\dot{\mathbb{S}} \blacktriangleleft \dot{\mathbb{T}}(X \vartriangleleft Y) =
\dot{\mathbb{S}}(X)\]

Where there is no ambiguity we will refer to the multi-cross-substriction simply as the
cross-substriction.



	multi-cross-superstriction

	Let \(\dot{\mathbb{S}}\) and \(\dot{\mathbb{T}}\) be multisets of
sets with \(X \in \dot{\mathbb{S}}\) and \(Y \in \dot{\mathbb{T}}\), then
their multi-cross-superstriction is defined in the same way as the
cross-superstriction with the multiplicities satisfying:


\[\dot{\mathbb{S}} \blacktriangleright \dot{\mathbb{T}}(X \vartriangleright Y) =
\dot{\mathbb{S}}(X)\]

Where there is no ambiguity we will refer to the multi-cross-superstriction simply as the
cross-superstriction.



	multi-cross-union

	Let \(\dot{\mathbb{S}}\) and \(\dot{\mathbb{T}}\) be multisets of
sets with \(X \in \dot{\mathbb{S}}\) and \(Y \in \dot{\mathbb{T}}\), then
their multi-cross-union is defined in the same way as the cross-union with the
multiplicities satisfying:


\[\dot{\mathbb{S}} \blacktriangledown \dot{\mathbb{T}}(X \cup Y) =
\dot{\mathbb{S}}(X) \cdot \dot{\mathbb{T}}(Y)\]

Where there is no ambiguity we will refer to the multi-cross-union simply as the
cross-union.



	multiclan

	A multiclan is a multiset of relations.

	multiplicity

	Given an element of a multiset, the multiplicity of that element is the number
of times the element appears in the multiset.  See Multiset for more information.

	multiset

	A multiset, also sometimes called a bag, is a generalization of the idea of
a set where multiple instances of the same element are allowed.  See Multiset
for more information.

	multiset addition

	The multiset addition of two multisets \(\dot{S}\) and \(\dot{T}\)
is defined as follows:


\[\big(\dot{S} + \dot{T}\big)(x) = \dot{S}(x) + \dot{T}(x)\]

for any \(x\), where here we take \(\dot{S}(x)=0\) for \(x \not\in \dot{S}\),
and \(\dot{T}(x)=0\) for \(x \not\in \dot{T}\).



	multiset difference

	The multiset difference of two multisets \(\dot{S}\) and \(\dot{T}\)
is defined as follows:


\[\begin{split}\big(\dot{S} \setminus \dot{T}\big)(x) =
\begin{cases}
    \dot{S}(x) - \dot{T}(x) & \text{if } \dot{S}(x) - \dot{T}(x)>0 \\
    \text{undefined} & \text{if } \dot{S}(x) - \dot{T}(x) \leq 0
\end{cases}\end{split}\]

for any \(x\), where here we take \(\dot{S}(x)=0\) for \(x \not\in \dot{S}\),
and \(\dot{T}(x)=0\) for \(x \not\in \dot{T}\).



	multiset intersection

	We define the multiset intersection of two multisets \(\dot{S}\) and
\(\dot{T}\) to be:


\[\big(\dot{S} \cap \dot{T}\big)(x) = min \big(\dot{S}(x), \dot{T}(x)\big)\]

for any \(x\), where here we take \(\dot{S}(x)=0\) for \(x \not\in \dot{S}\),
and \(\dot{T}(x)=0\) for \(x \not\in \dot{T}\).



	multiset union

	We define the multiset union of two multisets \(\dot{S}\) and
\(\dot{T}\) to be:


\[\big(\dot{S} \cup \dot{T}\big)(x) = max \big(\dot{S}(x), \dot{T}(x)\big)\]

for any \(x\), where here we take \(\dot{S}(x)=0\) for \(x \not\in \dot{S}\),
and \(\dot{T}(x)=0\) for \(x \not\in \dot{T}\).



	partition

	A partition of a set is the splitting of a set into a collection of smaller
subsets. Mathematically, given a set \(S\), we create a set of subsets of
\(S\) such that the union of those sets is \(S\), and whose pairwise
intersection is the empty set (another term for this is that any two sets are
disjoint).

	power set

	The power set of any set \(S\), written \(P(S)\), is the set of all subsets of
\(S\), including the empty set and \(S\) itself. We also use the expressions ‘second
power set’, ‘third power set’ and so on to mean successive application of the power set
operation for the indicated number of times: ‘power set of the power set of the ... of
\(S\). (Adapted from Wikipedia: Power set [http://en.wikipedia.org/wiki/Power_set].)

	projection

	Given a clan, call it \(C\), and a collection of elements, call it
\(lefts\), the projection of \(C\) onto \(lefts\) is a new clan
where all of the left components of all of the couplets of the
relations of \(C\) are in the set \(lefts\).

To obtain the projection of \(C\) onto \(lefts\) mathematically we can do this as
follows:


\[\begin{split}D_{lefts} := \{l{\mapsto}l\ : l\in lefts \} \\
project(C,lefts) = \{ R \circ D_{lefts}\ : R\in C\}\end{split}\]



	reflexive

	A relation \(R\) is said to be reflexive if:


\[\forall x \in left(R) \cup right(R): x{\mapsto}x \in R\]

A couplet can also be reflexive if it is of the form \(x{\mapsto}x\).

See also left set, right set.



	regular

	A short name for left-regular in cases where no ambiguities are expected.

	relation

	A relation is a set of couplets.  See also binary relation.

	right

	A short name for right component where no ambiguity is expected.

	right component

	Given a couplet represented by \(l{\mapsto}r\) the component
\(r\) is the right component.

	right multiset

	The right multiset of a multiclan \(\mathbb{C}\) is the
multiset addition of all right sets of its member relations:


\[right(\mathbb{C}) = \underset{R\ \in\ \mathbb{C}}{+} right(R)\]



	right set

	The right set of a relation \(R\) is the set of all
right components of its members:


\[right(R) = \{ r\ : l{\mapsto}r \in R \}\]

The right set of a clan \(\mathbb{C}\) is the union of all
right sets of its member relations:


\[right(\mathbb{C}) = \underset{R\ \in\ \mathbb{C}}{\bigcup} right(R)\]



	right-functional

	A relation \(R\) is said to be right-functional if:


\[y{\mapsto}x \in R\ \&\ z{\mapsto}x \in R \implies y = z\]



	right-functional union

	The right-functional union of two right-functional relations
\(R\) and \(Q\) is the union of the two relations if the result is
right-functional, otherwise the result is not defined:


\[\begin{split}R \underset{rf}{\cup} Q =
\begin{cases}
    R \cup Q & \text{if }R \cup Q \text{ is right-functional} \\
    \text{undefined} & \text{if it is not right-functional}
\end{cases}\end{split}\]



	right-regular

	A clan \(\mathbb{C}\) is said to be right-regular if the
right sets of all its relations are the same:


\[\forall R, Q \in \mathbb{C}: right(R) = right(Q)\]



	set

	A set is a collection of distinct objects.  Each object of a set is called an
element of the set.  In particular, if \(X\) is a set, then we denote the fact
that \(x\) is an element of \(X\) by writing \(x\in X\).  We will apply the
axioms of Zermelo-Fraenkel set theory with choice (ZFC) to the sets.  See also
Set Notation for more information about set notation

	set A

	The set \(A\) is the set of all atoms. It is a subset of the
set M (\(M\)).

	set M

	The set \(M\) is the set of all elements that can be represented in a given
system, including atoms, couplets and sets. (A consequence of
this is that the power set of \(M\) \(P(M)\) cannot be represented in a
given system, and therefore is not an element of \(M\).)

	set N

	The set \(N\) is the set of all positive integers.

	submultiset

	The submultiset relation is a binary relation of multisets. A multiset
\(\dot{S}\) is a submultiset of a multiset \(\dot{T}\) if the following holds:


\[\dot{S} \subset \dot{T} \iff \forall x \in \dot{S}, \: \dot{S}(x) \leq \dot{T}(x).\]



	subset

	The subset relation is a binary relation of sets. A set \(S\) is
a subset of a set \(T\) if every element of \(S\) is also an element of \(T\):


\[S \subset T \implies \forall x\ [\ x \in S\ \implies\ x \in T\ ]\]



	substriction

	Substriction is a partial binary operation on sets and multisets. The
substriction of two sets or multisets \(S\) and \(T\) is defined as:


\[S \vartriangleleft T = S\ \ \text{if}\ \ S \subset T\]

(When extended to an algebra of sets of sets (for example, the algebra of clans),
we obtain the cross-substriction, which is also sometimes called
‘substriction’.)



	supermultiset

	The supermultiset relation is a binary relation of multisets. A
multiset \(\dot{S}\) is a supermultiset of a multiset \(\dot{T}\) if the following
holds:


\[\dot{S} \supset \dot{T} \iff \forall x \in \dot{T},  \: \dot{S}(x) \geq \dot{T}(x).\]



	superset

	The superset relation is a binary relation of sets. A set \(S\) is a
superset of a set \(T\) if every element of \(T\) is also an element of \(S\):


\[S \supset T \implies \forall x\ [\ x \in T\ \implies\ x \in S\ ]\]



	superstriction

	Superstriction is a partial binary operation on sets and multisets.
The superstriction of two sets or multisets \(S\) and \(T\) is defined as:


\[S \vartriangleright T := S\ \ \text{if}\ \ S \supset T\]

(When extended to an algebra of sets of sets (for example, the algebra of clans),
we obtain the cross-superstriction, which is also sometimes called
‘superstriction’.)



	symmetric

	A relation \(R\) is said to be symmetric if:


\[\forall x, y \in left(R) \cup right(R): x{\mapsto}y \in R \implies y{\mapsto}x \in R\]

See also left set, right set.



	symmetric difference

	The symmetric difference of two sets \(S\) and \(T\) is the set of
elements that are only in one of the sets. The definition is:


\[S \vartriangle T = (S \cup T) \setminus (S \cap T)\]



	transitive

	A relation \(R\) is said to be transitive if:


\[\forall x, y, z \in left(R) \cup right(R):
(x{\mapsto}y \in R \ \& \ y{\mapsto}z \in R) \implies x{\mapsto}z \in R\]

See also left set, right set.



	transposition

	Transposition is a unary operation on couplets. The transposition of a couplet
\(a{\mapsto}b\) is defined as:


\[\overleftrightarrow{a{\mapsto}b} = b{\mapsto}a\]

The operation may be extended to extended algebras (like the algebra
of relations) using the unary extension and – if there is no danger of ambiguities
– is then also called simply ‘transposition’.

In multisets and multiclans the operation is the same and the
multiplicities do not change.



	unary extension

	The unary extension is the operation that extends a unary operation from
its algebra to an extended algebra (which is an algebra of sets):


\[unaryExtn(op, S) := \{op(s)\ :\ s \in S
\text{ where } op(s) \text{ is defined}\}\]



	unary multi-extension

	The unary multi-extension is the operation that extends a unary operation
from its algebra to an extended algebra (which is an algebra of multisets).
For this extension, the multiplicities do not change:


\[unaryExtn(op, \dot{S}) := \{op(s){:}\dot{S}(s)\ :\ s \in S
\text{ where } op(s) \text{ is defined}\}\]



	unary operation

	An operation with only one argument, typically with a result that belongs to the same
ground set as the argument (when the operation is a member of an algebra).

	union

	An operation on sets that creates a set by collecting the elements of two or more
individual sets into a new set.  In mathematical terms, if \(\mathbb{S}\) is a
collection of sets, then the union of all of the sets in \(\mathbb{S}\) is
denoted:


\[\bigcup \mathbb{S} = \bigcup_{T\in\mathbb{S}}T,\]

and is the set \(\{x\ : \exists T \in \mathbb{S},\ x \in T\}\).  If
\(\mathbb{S}\) consists of only two sets, the union is called a binary union.
If \(\mathbb{S}\) consists of a finite collection of sets, the union is called a
finite union.  See also Wikipedia: Union [http://en.wikipedia.org/wiki/Union_%28set_theory%29].



	Zermelo-Fraenkel set theory with choice (ZFC)

	A system of axioms on sets that is the standard form of set theory and the foundation
of much of modern mathematics. See also
Wikipedia: Zermelo-Fraenkel set theory with choice (ZFC) [http://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory].







          

      

      

    

  

    
      
          
            
  
Algebras

Definition

In mathematics (abstract algebra [http://en.wikipedia.org/wiki/Abstract_algebra]), an algebra (also referred to as an algebraic structure [http://en.wikipedia.org/wiki/Algebraic_structure]
consists of a set (called the ground set, which is the set that contains the elements
to which the algebra applies) with one or more operations (finitary operation [https://en.wikipedia.org/wiki/Finitary]) on the set
such as:



	A set of binary operations (each with an optional
identity element).

	A set of unary operations.

	A set of relations defined on the ground set.






The ground set combined with the set of operations and identity elements together is called
the signature of the algebra.

Some types of algebras:


	A semigroup is a non-empty set \(X\) together with a binary operation \(\ast\)
which is associative.



	A monoid is a semigroup \(X\) with an identity element \(e\) under \(\ast\).
We call \(e\) and identity element if:
\(\begin{equation*}
x\ast e=e\ast x\text{ for all }x\in X.
\end{equation*}\)



	A group is a monoid where every element has an inverse under \(\ast\), namely,
for each \(x\in X\) there exists a \(y\in X\) such that \(x\ast y=e=y\ast x\).



	A Boolean algebra consists of a non-empty set \(B\) together with two binary
operations we will call \(\oplus\) and \(\odot\), a unary operation \(^{*}\), and
two distinguished elements \(\mathbf{0}\) and \(\mathbf{1}\) (these are not, in
general, the integers 0 and 1) such that:


	\(\oplus\) and \(\odot\) are each commutative and associative, and each
distributes over the other.

	For each \(x\in B\)





\[\begin{split}\begin{equation*}
\begin{array}{lll}
    x\oplus \mathbf{0}=x & \text{     } & x\odot \mathbf{0}=\mathbf{0} \\
    x\oplus \mathbf{1}=\mathbf{1} & \text{     } & x\odot \mathbf{1}=x \\
    x\oplus x\text{*}=\mathbf{1} & \text{     } & x\odot x\text{*}=\mathbf{0}%
\end{array}%
.
\end{equation*}\end{split}\]





	For all \(x,y\in B\)





\[\begin{equation*}
\begin{array}{lll}
    x\odot (x\oplus y)=x & \text{     } & x\oplus (x\odot y)=x%
\end{array}%
.
\end{equation*}\]









Algebra of Sets

Definition:

The algebra of sets is an algebra with the signature


\[\bigg[
    P(M) ,
    \big\{
        [ \cup, \varnothing ] ,
        [ \cap, M ]
    \big\} ,
    \big\{\ '\ \big\} ,
    \big\{ \subset \big\}
\bigg]\]

Its ground set is the power set of set M (\(M\)). The binary operations are
union (\(\cup\), with the identity element \(\varnothing\), the empty set)
and intersection (\(\cap\), with the identity element \(M\)), the one
unary operation is the complement (\('\)) and the one relation is the
subset relation.

Other binary operations (that can be derived from the basic operations and relations)
include difference, substriction and superstriction; other
relations include the superset relation.

Remark and useful fact: The algebra of any non-empty set is always a Boolean algebra.
This means that in particular the algebra on set M (\(M\)) is a Boolean algebra.  It also
true that any Boolean algebra with a finite ground set \(B\) is the algebra of some set.

Other useful operations on sets:


	The difference of two sets.

	The symmetric difference of two sets.



This gives us two alternative algebras of sets where we use difference and symmetric
difference:



\[\bigg[ P(M),[-],[\bigtriangleup ],\subset ,^{\prime }\bigg]\]




and an extension



\[\bigg[
    P(M),
    [\cup ,\varnothing ],
    [\cap ,M],[-],
    [\bigtriangleup ],\subset ,^{\prime }
\bigg].\]




Identities concerning difference and symmetric difference:  Given subsets \(S,T\) and
\(U\) of set M (\(M\)):



	\(S-T=S\cap T^{\prime }\).

	\(S-S=\varnothing\).

	\(S-\varnothing =S\).

	\(\varnothing -S=\varnothing\).

	\(S-M=\varnothing\).

	\(M-S=S^{\prime }\).

	\(S\bigtriangleup T=T\bigtriangleup S\). (\(\bigtriangleup\) is commutative.)

	\(S\bigtriangleup (T\bigtriangleup U)=(S\bigtriangleup T)\bigtriangleup U\). (\(\bigtriangleup\) is associative.)

	\(S\bigtriangleup S=\varnothing\).

	\(S\bigtriangleup \varnothing =S\).

	\(S\bigtriangleup M=M-S=S^{\prime }\).









Algebra of Multisets


Multiset

Definition

A multiset is a set that allows multiple instances of any given element.  We define it as a
function from a given subset of set M (\(M\)) to the positive integers.  In particular, we call
\(\dot{S}\) a multiset of \(M\) if for certain \(x\in M\) we have \(\dot{S}(x)\)
is a positive integer that we call the multiplicity of \(x\).

Example

Let \(M=\{a,b,c\}\) and \(\dot{S}\) represent the multiset \(\{a,a,a,b,b\}\), then
we have \(\dot{S}(a)=3\), \(\dot{S}(b)=2\), and \(\dot{S}(c)\) is not defined.  In
this case \(a\) has multiplicity 3, and \(b\) has multiplicity 2.




Multiset Algebra

Definition

Let \(\dot{P}(M)\) represent the set of all multisets of \(M\).  Using the definitions of
multiset union, multiset addition, multiset intersection, and
submultiset as applied to multisets we have an algebra on multisets with the following
signature:


\[\bigg[\dot{P}(M), [\cup,\varnothing], [+,\varnothing],\cap,\subset \bigg].\]






Algebra of Couplets

The algebra of couplets is an algebra with the signature



\[\bigg[
    M \times M ,
    \big\{\ \circ\ \big\} ,
    \big\{ \leftrightarrow \big\}
\bigg]\]




Its ground set is the Cartesian product of set M (\(M\)) with itself. The only
binary operation is composition (\(\circ\), without identity element)
and the only unary operation is the transposition (\(\leftrightarrow\)).




Algebra of Relations

Definition

The algebra of relations is the algebra of sets of couplets;
its signature is



\[\bigg[
    P(M \times M) ,
    \big\{
        [ \circ, D_M ]
    \big\} ,
    \big\{ \leftrightarrow \big\}
\bigg]\]




Its ground set is the power set of the Cartesian product of set M (\(M\)) with
itself. The only binary operation is composition (\(\circ\), with the
identity element \(D_M\), which is the diagonal on set M (\(M\))) and the only
unary operation is the transposition (\(\leftrightarrow\)).

The binary operations union and intersection, the unary
operation complement and the subset relation are implicitly present,
inherited from the algebra of sets (since the algebra of relations is also an
algebra of sets).

Other operations and relations (that can be derived from the basic operations and relations)
include the binary operations difference, substriction, superstriction,
left-functional union and right-functional union and the superset
relation.




Algebra of Clans

Definition

The algebra of clans is the algebra of sets of relations, which
is sets of sets couplets. Its ground set is therefore the second power set of the
Cartesian product of set M (\(M\)) with itself.  As a result of being a second power set, the
operations of cross-union and cross-intersection can be applied, in addition to
the operations on an algebra of sets. Moreover, the operations transposition and
composition from the algebra of relations extend in a natural way to the
algebra of clans.  We also include substriction, superstriction,
cross-substriction and cross-superstriction.  As a result, it has the following
signature:


\[\bigg[ P^{2}(M \times M),[\cup ,\varnothing ],[\mathbb{\cap },P(M \times M)],
[\blacktriangledown ,\{\varnothing\}],[\mathbb{\blacktriangle },\{M \times M\}],
\vartriangleleft, \vartriangleright, \blacktriangleleft, \blacktriangleright, \subset , \prime
\bigg].\]

Note that included in the operations of union and cross-union are the special
left-functional and right-functional cases of
cross-left-functional union and cross-right-functional union.




Algebra of Multiclans

Definition

The algebra of multiclans is an algebra that generalizes the algebra of clans.  Since
we use \(P(M \times M)\) to denote the set of couplets, a multiset of relations is a
multiset of sets of couplets, so we will use \(\dot{P}(P(M \times M))\) to denote the multiset
of relations.  Combining the multiset algebra with the clan algebra we have


\[\bigg[ \dot{P}(P(M \times M)),[\cup ,\varnothing ],[+,\varnothing],\mathbb{\cap },
[\blacktriangledown ,\{\varnothing\}],[\mathbb{\blacktriangle },\{M \times M\}],
\vartriangleleft, \vartriangleright, \blacktriangleleft, \blacktriangleright, \subset \bigg].\]

Here the binary operations are all binary multi-extensions of the operations from the
algebra of clans, with the exception of multiset addition, and subset is replaced with submultiset.
For example, cross-substriction is replaced with multi-cross-substriction.  Note that there
is no extension of the complement operation.  As in the case of clans, the multiset versions
of the operations of cross-left-functional union and cross-right-functional union
are implied.







          

      

      

    

  

    
      
          
            
  
Extension

Definition

Given a set, or algebra \(S\), we say that \(T\) is an extension of \(S\), or
extends \(S\), if one or more of the following holds:


	\(S \subseteq T\) and \(T\) has operations that \(S\) does not.

	\(S \subset T\) and any operation \(op\) on \(S\) can be obtained from an
operation \(OP\) on \(T\) by restricting \(OP\) to elements only in \(S\).



For the purposes of data algebra, we will deal almost exclusively with algebras of
sets and their extensions.  Mathematically an algebra can be extended in many different
ways.  Below are some general examples, as well as some specific to data algebra.


Examples of extensions


Basic examples


	Any set \(S\) with no pre-defined operations on it extends to its set algebra:
\(\bigg[P(S), \big \{ [ \cup, \varnothing ] , [ \cap, M ] \big\} , \big\{\ '\
\big\} , \big\{ \subset \big\} \bigg]\).

	Let \(\mathbb{Z}\) represent the set of integers, and \(\mathbb{Q}\) represent
the set of rational numbers.  The set \(\mathbb{Z}\) has a natural algebra under addition,
and multiplication, and negation with signature:
\(\bigg[ \mathbb{Z}, \big \{[+,0],[\cdot ,1]\}, \big \{-\}, \bigg]\).
This algebra naturally extends to an algebra on the rational numbers with signature:
\(\bigg[ \mathbb{Q}, \big \{[+,0],[\cdot ,1]\}, \big \{-\}, \bigg]\).






Examples from data algebra


	The algebra of couplets on a set \(M\) with signature
\(\bigg[ M \times M , \big\{\ \circ\ \big\} , \big\{ \leftrightarrow \big\} \bigg]\)
extends to the algebra of relations
\(\bigg[P(M \times M),\big\{[ \circ, D_M ] \big\} , \big\{ \leftrightarrow \big\}\bigg]\),
where \(\circ\) is composition, \(\leftrightarrow\) is transposition,
and \(D_M\) is the diagonal of \(M\).



	The power set of a power set has an algebra given by the algebra of sets.
Hence, if \(U\) is a set, we have an algebra with signature
\(\bigg[ P^{2}(U),[\cup ,\varnothing ],[\mathbb{\cap },P(U)],\subset ,\prime \bigg]\).
This algebra extends to the algebra
\(\bigg[ P^{2}(U),[\cup ,\varnothing ],[\mathbb{\cap },P(U)],
[\blacktriangledown ,\{\varnothing\}],[\mathbb{\blacktriangle },\{U\}],\subset ,\prime \bigg]\),
where \(\blacktriangledown\) is the cross-intersection and \(\blacktriangle\)
is the cross-union, which are binary extensions of intersection and
union resprectively from \(P(U)\) to \(P^{2}(U)\).  This is how we extend the
algebra of relations to the algebra of clans.



	An algebra of sets can also be extended to an algebra of multisets.    In particular we
can simply take binary multi-extensions of all of the binary operations, and replace
subset with submultiset.  We can also include multiset addition, but we
will have to take out complement, as there is not multiset equivalent of that.
Therefore, the algebra


\[\bigg[
P(M) ,
\big\{
    [ \cup, \varnothing ] ,
    [ \cap, M ]
\big\} ,
\big\{\ '\ \big\} ,
\big\{ \subset \big\}
\bigg]\]

extends to


\[\bigg[\dot{P}(M), [\cup,\varnothing], [+,\varnothing],\cap,\subset \bigg].\]



	Similar to the previous example an algebra of clans can extend to an
algebra of multiclans, by taking binary multi-extensions of all the operations.  Hence,
an algebra of clans with signature:



\[\bigg[ P^{2}(M \times M),[\cup ,\varnothing ],[\mathbb{\cap },P(M \times M)],
[\blacktriangledown ,\{\varnothing\}],[\mathbb{\blacktriangle },\{M \times M\}],
\vartriangleleft, \vartriangleright, \blacktriangleleft, \blacktriangleright, \subset , \prime
\bigg]\]




can be extended to an algebra of multiclans with signature



\[\bigg[ \dot{P}(P(M \times M)),[\cup ,\varnothing ],[+,\varnothing],\mathbb{\cap },
[\blacktriangledown ,\{\varnothing\}],[\mathbb{\blacktriangle },\{M \times M\}],
\vartriangleleft, \vartriangleright, \blacktriangleleft, \blacktriangleright, \subset
\bigg].\]











An example of adding set operations to an algebra with no given set structure


	Let us take the algebra of integers with signature
\(\bigg[ \mathbb{Z}, \big \{[+,0],[\cdot ,1]\}, \big \{-\}, \bigg]\) as in an earlier
example.  Since \(\mathbb{Z}\) is a set, it also posesses the set algebra
\(\bigg[P(\mathbb{Z}), \big \{ [ \cup, \varnothing ] , [ \cap, M ] \big\} , \big\{\ '\
\big\} , \big\{ \subset \big\} \bigg]\).  We can extend
\(\bigg[ \mathbb{Z}, \big \{[+,0],[\cdot ,1]\}, \big \{-\}, \bigg]\) to the set algebra
by defining addition, multiplication, and negation on subsets of \(\mathbb{Z}\) as follows:
Given subsets \(A,B\subset\mathbb{Z}\)


\[\begin{split}\begin{align*}
    A + B &:= \{c \in \mathbb{Z} : c = a + b
        \text{ for some }a \in A \text{ and for some } b \in B\} \\
    A \cdot B &:= \{c \in \mathbb{Z} : c = a \cdot b
        \text{ for some } a \in A \text{ and for some } b \in B\} \\
    -A &:= \{c \in \mathbb{Z} : c = -a
        \text{ for some } a \in A\}
\end{align*}\end{split}\]

In words, the above equations say that over the integers:


	The sum of sets is the set of sums.

	The product of sets the set of products.

	The negative of a set is the set of negatives.



So for example if \(A=\{3,-5,9\}\) and \(B=\{4,12\}\), then


\[\begin{split}\begin{eqnarray*}
    \{3,-5,9\}+\{4,12\} &=&\left\{
        \begin{array}{c}
            3+4,3+12, \\
            -5+4,-5+12, \\
            9+4,9+12%
        \end{array}%
        \right\} \\
        &=&\left\{
        \begin{array}{c}
            7,15, \\
            -1,7, \\
            13,21%
        \end{array}%
        \right\} \\
        &=&\{7,15,-1,13,21\}.
\end{eqnarray*}\end{split}\]

and,


\[\begin{split}\begin{eqnarray*}
\{3,-5,9\}\cdot \{4,12\} &=&\left\{
\begin{array}{c}
    3\cdot 4,3\cdot 12, \\
    -5\cdot 4,-5\cdot 12, \\
    9\cdot 4,9\cdot 12%
\end{array}%
\right\} \\
&=&\left\{
\begin{array}{c}
    12,36, \\
    -20,-60, \\
    36,108%
\end{array}%
\right\} \\
&=&\{12,36,-20,-60,36,108\}.
\end{eqnarray*}\end{split}\]

and


\[-A=-\{3,-5,9\}=\{-3,5,-9\}\]

In conclusion, this shows that the algebra
\(\bigg[ \mathbb{Z}, \big \{[+,0],[\cdot ,1]\}, \big \{-\}, \bigg]\) extends to the algebra


\[\begin{equation*}
    \bigg[ P(\mathbb{Z}),\{[\cup ,\varnothing ],[\mathbb{\cap },%
    \mathbb{Z}],[+,\{0\}],[\cdot ,\{1\}]\},\{-,^{\prime }\},\{\subset \}\bigg] ,
\end{equation*}\]













          

      

      

    

  

    
      
          
            
  This page is here to help review notation and terminology for those new to, or requiring a
refresher, of sets and set theory.


Set Notation

Recall that a set is a collection of distinct objects.  In any given set each object in
the set is called an element of the set.

For example, if \(S\) represents a set, and \(a\) is an element of set \(S\), we denote
this by writing



\[a \in S.\]




If \(a\) is not an element of set \(S\), we write it as



\[a \not\in S.\]




We can more explicitly write out what the specific elements of a set are by using braces:
\(\{,\}\).  For example, if I wanted \(S\) to be the set of integers between 2 and 6
inclusively, then I can write



\[S = \{2,3,4,5,6\}.\]




There is also the set with no elements at all in it, and it is called the empty set, and is
denoted by \(\emptyset\).  Other ways of denoting are by using \(\varnothing\), or even
\(\{\}\).

We also use colons to represent conditions on elements in a particular set.  This lets us build up
more complicated sets.  For example, if I use \(\mathbb{Z}\) to represent the set of all
integers, then if I want \(T\) to represent the set of all integers greater than five, I can
write it as



\[T = \{n \in \mathbb{Z} : n > 5\}.\]




Colons in combination with braces and \(\in\) is called set builder notation and lets us
create very complicated sets.  Let’s say I want to create the set of all irrational numbers, then
I can do this by starting with the sets of real numbers, rational numbers, and using set
builder notation:

Let \(\mathbb{R}\) represent the set of real numbers, and \(\mathbb{Q}\) the set of
rational numbers, then if we use \(X\) to represent the set of irrational numbers, we can write
it as



\[X = \{ r \in \mathbb{R} : r \not\in \mathbb{Q} \}.\]




We can add even more conditions.  Let us use \(Y\) to represent the set of negative rational
numbers, then we can write it as



\[Y = \{ r \in\mathbb{R} : r\not\in\mathbb{Q}\ \&\ r<0 \},\]




or alternatively by going back to \(X\) and saying



\[Y = \{ x \in X : x<0 \}.\]




To help write conditions precisely without creating too much clutter, we will sometimes use symbols
to represent logical quantifiers such as \(\exists\) to say “there exists” or \(\forall\) to
represent “for all”.  For example, if we wanted to say that a set \(S\) was a subset of a set
\(T\), that is, any element of \(S\) is also an element of \(T\), we can write that as



\[\forall x, x \in S \implies x \in T.\]




See also set notation [https://en.wikipedia.org/wiki/Set_notation] and set (mathematics) [https://en.wikipedia.org/wiki/Set_%28mathematics%29] for more information.
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